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ABSTRACT 
 
The Mississippi River Basin is the fourth largest drainage basin in the world, and is susceptible to multi-level flood 

events caused by heavy precipitation, snow melt, and changes in water table levels. Conducting flood analysis 

during periods of disaster is a challenging endeavor for NASA’s Short-term Prediction Research and Transition 

Center (SPoRT), Federal Emergency Management Agency (FEMA), and the U.S. Geological Survey’s Hazards 

Data Distribution Systems (USGS HDDS) due to heavily-involved research and lack of manpower. During this 

project, an automated script was generated that performs high-level flood analysis to relieve the workload for end-

users. The script incorporated Landsat 8 Operational Land Imager (OLI) tiles and utilized computer-learning 

techniques to generate accurate water extent maps. The script referenced the Moderate Resolution Imaging 

Spectroradiometer (MODIS) land-water mask to isolate areas of flood induced waters. These areas were overlaid 

onto the National Land Cover Database’s (NLCD) land cover data, the Oak Ridge National Laboratory’s LandScan 

data, and Homeland Infrastructure Foundation-Level Data (HIFLD) to determine the classification of areas impacted 

and the population density affected by flooding. The automated algorithm was initially tested on the September 2016 

flood event that occurred in Upper Mississippi River Basin, and was then further tested on multiple flood events 

within the Mississippi River Basin. This script allows end users to create their own flood probability and impact 

maps for disaster mitigation and recovery efforts. 
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INTRODUCTION 

 
The Mississippi River Basin is the world’s fourth largest drainage basin, draining 41% of the contiguous U.S. to 

the Gulf of Mexico (U.S. Army Corps of Engineers, n.d.). The millions of residents within the Mississippi River 

Basin area, which includes portions of 31 states, undergo social and economic damage each time a flood event 

occurs within the Basin (Kusky, 2013). Since 2010, flooding has incurred more than $34 billion in damages within 

the basin (Gerencer, 2015) and has continuously been an issue for farmers within the Midwest region (Garber, 

2008). In a recent flood event in September 2016, over 10,000 people were evacuated from flood areas in Iowa and 

Wisconsin (Blau, 2016), and an estimated tens of thousands of acres of crops were lost as a result of flooded 

farmland (Eller, 2016; Towne, 2016). This project addressed the needs of communities in the basin by providing 

more precise data and maps to disaster response and relief organizations. 

The objective of this project was to create a Python script that provided the user the ability to conduct flood 

analysis of any given area and date across the United States. This project partnered with FEMA, the USGS Hazards 

Data Distribution Systems (HDDS), and NASA’s Short-term Prediction Research and Transition Center (SPoRT). 
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FEMA is the primary disaster relief organization in the United States with a mission to “support…citizens and first 

responders to ensure that as a nation we work together to build, sustain, and improve…capability to prepare for, 

protect against, respond to, recover from and mitigate all hazards” (Federal Emergency Management Agency, 2016). 

The USGS HDDS provides a multitude of data on various natural hazards and ecosystems to scientists worldwide, 

and NASA SPoRT is a NASA project designed to distribute unique observations and data acquisitions to enhance 

understanding of various weather events. 

The project partners expressed a need for an automated, easy to operate script for flood analysis due to 

shrinking budgets and lack of manpower to conduct such extensive studies. The USGS HDDS and FEMA expressed 

an interest in the analysis of flood that occurred in Cedar Rapids, Iowa during September 2016. The automated 

script was initially tested on the September 2016 flood, and was then used to analyze multiple flood events 

throughout the entire Mississippi River Basin (Figure 1). 

 

 

  
 

Figure 1. Project study area – the Mississippi River Basin 

 

 

METHODOLOGY 
 

Data Acquisition 
The Python script was tested on the Cedar Rapid, Iowa flood event that reached its peak on September 23, 2016. 

This project primarily utilized Landsat 8 OLI multispectral imagery of flood events at a 30m spatial resolution. 

Landsat 8 OLI captured data soon after the flood peak, on September 26, 2016, providing extremely clear images of 

the flood extent. We acquired these images manually using USGS’s Earth Explorer and Global Visualization Viewer 

and saved to the workspace defined by the user prior to flood analysis. In an earlier study, we determined that 

McFeeters (1996) Normalized Difference Water Index (NDWI) identified flood water more accurately than other 

vegetation indices. To produce this NDWI,  bands that represent reflected green light and  near infrared radiation are 

necessary; for Landsat 8 OLI, this includes band 3, which  records visible green light from 0.53 µm to 0.59 µm 

wavelengths, and band 5, which records near infrared radiation from 0.85 µm to 0.88 µm wavelengths (USGSa, 

2016). We also used band 9, known as the cloud mask, in our analysis to removed unusable data. 

At the start of each flood analysis, the script set local variables, retrieved relevant imagery from the workspace 

with the Python glob.glob function, and imported Arcpy, including 3D Analyst and Spatial Analyst extensions 

(Figure 2). Local variables included a water mask, as well as agriculture, population, and infrastructure data. The 

Global Water Mask was obtained from the University of Maryland and NASA’s Global Land Cover Facility 
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website, and provided a complete map of surface water at 250m spatial resolution. National Land Cover Database 

2011 data were obtained from the Multi-Resolution Land Characteristics consortium website. The 2011 NLCD 

dataset categorizes different types of land cover into 16 classes at a 30m spatial resolution and provided valuable 

information regarding flood impact on agriculture. Homeland Infrastructure Foundation-Level Data were acquired 

from the Homeland Infrastructure Foundation-Level Data website. The HIFLD were used to map flood impact on 

infrastructure. LandScan 2014 data were downloaded from the Oak Ridge National Laboratory and were used to 

analyze flood impact on local populations. 

 

 
Figure 2. Algorithm used to create the data acquisition and processing sections of the Flood Probability Python 

script 

 

 

 Data Processing 
After data acquisition, manually downloaded Landsat images were processed resulting in an NDWI (Figure 2). 

In order to conduct analysis on a flooded area larger than a single Landsat 8 OLI tile at one time, the individual tiles 

were mosaicked into a single tile according to band type using a “for” function loop and “Mosaic to New Raster” 

tool from the Arcpy package. Once mosaicked, the cloud mask (band 9) was extracted from the mosaicked bands 3 

and 5. To ensure an accurate value for reflectance during processing, bands 3 and 5 were converted from Digital 

Numbers (DN) to top of atmosphere (TOA) reflectance. While surface reflectance would have produced even more 

accurate results, the turn-around time required for a Landsat surface reflectance product is three to five days (USGS, 

2016a). We decided that even a short lag would reduce the benefits of the script to the project partners and 

proceeded with TOA reflectance. 

Digital Numbers are the actual amount of radiance measured by the satellite, whereas reflectance is a property 

of the object being observed and represents the ratio of light reaching and being reflected from the target. TOA 

refers to the value of this reflectance at the top of the atmosphere, as opposed to at the Earth’s surface. This 

conversion was necessary as DN does not account for changes in the radiance measured. The TOA reflectance is 

calculated from the DN values of the radiance image using Equation 1: 

 

𝜌𝜆′ =  𝑀𝜌𝑄𝑐𝑎𝑙 +  𝐴𝜌      (1) 

 

 

where ρλ
'
 is TOA planetary reflectance, Mρ is band-specific multiplicative rescaling factor from the metadata, Qcal is 

quantized and calibrated DN values, and Aρ is band-specific additive rescaling factor from the metadata (USGS, 

2016b). 
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Once the TOA conversion was complete, invalid image areas were eliminated by using the Raster Calculator 

through the Arcpy module to remove negative values. This step ensured the proper execution of a NDWI. The 

NDWI was calculated using Equation 2: 

 

 

𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛−𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛+𝑁𝐼𝑅
      (2) 

 

 

where Green is visible green light and NIR is near-infrared radiation. NDWI helps distinguish water from non-water 

by using the green and NIR bands to produce an image where negative values are typically non-water features and 

positive values are typically open water areas (USGS, 2016c). NDWI outputs tend to appear cleaner with less noise, 

and are not as influenced by seasonality (e.g. growing seasons) as other spectral signatures (Gao, 1996). 

Data Analysis 
During the data analysis stage, flood-induced water and impacted agriculture, population, and infrastructure 

were identified in the processed images (Figure 3). The script distinguished land and water within the study area by 

applying a maximum likelihood classification to the NDWI using an NDWI signature file that we developed. This 

signature file was a collection of samples of what water and land should look like in an NDWI output. These served 

as a baseline to distinguish water from land. These samples were then incorporated into the computer learning 

classification process. 

 

 

Figure 3. Algorithm used to create the data analysis section of the Flood Probability Python script 

 

 

Once the classification was complete, the water mask was used to remove non-flood waters from the NDWI 

signature, resulting in only flood induced water (Figure 4). After the Flood Extent Map was created, the LandScan, 

Homeland Infrastructure Foundation-Level Data (HIFLD), and NLCD 2011 data were clipped to the study area, and 

data that intersected with the flood waters were extracted to create a Flood Impact Map (Figure 5). This impact map 

provided information about the effect of the flood on population, infrastructure, and agriculture – in the case of the 

September 2016 flood event only population and agriculture were impacted. 
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Figure 4. Flood Extent Map of the northwest corner of the Iowa flood event, identifing areas of flood inducted water 

 

 
 

Figure 5. Flood Impact Map of the northwest corner of the Iowa flood event, identifying impacted areas of 

population, agriculture, and infrastructure 
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The automated algorithm was further tested on multiple flood events that occurred between September 2013 

and March 2016 throughout the Mississippi River Basin. At FEMA’s request, data was specifically extracted from 

an Iowa flood event that took place in September 2016. 

 

RESULTS & DISCUSSION 
 

The script was used to analyze 11 different flood events that occurred between August 2013 and March 2017, as 

seen in Table 1 and Figure 6, to test its ability to identify flood water and flood impact on a variety of landscapes 

and physiographic regions. A flood extent map and flood impact map were created for each of these flood events to 

analyze the flood impact on the region. In addition, these flood events fell within five of the six physiographic 

regions within the Mississippi River Basin, providing confidence in the script’s and the signature file’s ability to 

analyze flood events throughout the basin. 

 

 

 

Table 1. List of flood events that were analyzed using the automated Python script 

 

Location Flood Date Image Date 

Reno Co., Kansas 8/4/2013 8/6/2013 

Boulder, Colorado 9/15/2013 9/17/2013 

Claremore, Oklahoma 5/23/2015 5/26/2015 

St. Louis, Missouri 12/28/2015 12/31/2015 

Mississippi/Louisiana 3/11/2016 3/13/2016 

Fremont Co., Wyoming 5/11/2016 5/13/2016 

St. Paul, Minnesota 6/23/2016 7/10/2016 

Fayette Co.,West Virginia 6/23/2016 6/30/2016 

Indiana/Ohio 8/28/2016 8/30/2016 

Cedar Rapids, Iowa 9/26/2016 9/27/2016 

Waynesburg, Pennsylvania 3/1/2017 3/4/2017 
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Figure 6. Map of flood events that were analyzed using the automated Python script 

 

 
The 11 flood events impacted nearly 20,000 people, over 74,000 acres of agriculture (i.e. 16%), and five large 

infrastructures. The flood that occurred in Mississippi and Louisiana during March 2016 had the greatest numerical 

population impact of the 11 events, affecting almost 8,000 people, while the Missouri flood event had the largest 

agricultural impact, effecting over 55,000 acres of agriculture in the area (Table 2). Abnormally, according to our 

analysis, the flood event in Minnesota had minimal impact on the population or agriculture. This lack of results 

could to be due to the delay in available Landsat 8 OLI imagery, which was not available until 14 days after the peak 

of the flood event. On the contrary, news articles that covered the Minnesota flood stated that there was at least $32 

million in damages and 53% of farmland was flooded (Davies, 2014). 
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Table 2. Impact Analysis of each flood event using the Flood Probability Python script 

    

 

Flood Impact 

Flood Event No. People Acres of Ag. Percent of Ag.  Infrastructure 

Reno Co., KS 63 321.14 0.09% 0 

Boulder, CO 6128 1,741.57 3.77% 

Grade School and 

Nursing Home/Assisted 

Living Facility 

Claremore, OK 219 6,719.43 1.73% 0 

St. Louis, MO 648 55,258.14 3.18% 0 

MS/LA 7857 4,427.21 5.24% College/University 

Fremont Co., WY 225 29.36 0.02% 0 

St. Paul, MN 0 8.22 0.00% 0 

Fayette Co.,WV 52 19.35 0.01% Child Care Facility 

IN/OH 925 424.77 0.07% 0 

Cedar Rapids, IA 953 4737 0.77% 0 

Waynesburg, PA 2447 630.93 0.57% Child Care Facility 

     

 

CONCLUSIONS 
 

Flooding can cause catastrophic damages to a community, and a disaster relief organization’s ability to identify 

flooded areas in a timely manner is crucial.  In the past, organizations such as FEMA and USGS HDDS have relied 

on flood detection models to plan relief efforts. These methods have a tendency to overcompensate and can lead 

relief efforts to areas that are not as highly impact. Now, with satellite imagery and the ability to automate the 

process, flood impacts can be detected in much greater detail throughout the United States. This project automated a 

flood probability algorithm that was used to analyze 11 flood events from August 2013 to March 2017, including 

events that occurred in five of the six physiographic regions within the Mississippi River Basin. For each event, the 

script produced a Flood Extent Map and Flood Impact Map allowing us to quantify impacts on agriculture, 

population, and infrastructure. The script, Flood Extent Maps and Flood Impact Maps created during the term will 

provide our project partners with valuable information about flood events that can be used to inform their decision-

making processes. 

 

Future Work 
The project partners expressed an interest in an automated imagery downloading process being supported within 

our code. This automated process would require the user to input the path and row of the tile of interest, and then the 

code would call and download the tile using the dnppy package. Acknowledging that data acquisition is one of the 

most challenging components to data analysis, the self-contained process would eliminate the need for an external 

site to be accessed that can confuse or complicate the analysis. The team developed a working version of this code, 

but it had a low success rate and incorrectly operated approximately 50% of the time. After searching for a solution, 

we have concluded that a 64-bit background processing on the 10.4 version of ArcMap would be sufficient to add 

this feature; however, this is an untested solution. 

There was also consideration in incorporating an input section that would allow the user to select the geographic 

region that he or she was interested in. This selection would incorporate premade signature files specific for each 

region, ensuring the accuracy of all analysis being conducted regardless of location. In addition, incorporating more 

robust infrastructure data would improve the usefulness of the product. Such data would enable our code to identify 

smaller infrastructure and residential houses impacted by flooding, oppose to only identifying major infrastructure 

like hospitals and schools.  

Furthermore, finding better methods to mask clouds and shadows, as well as mapping prevailing water in the 

United States, would improve the overall accuracy of the product. The cloud masking was conducted through 
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utilization of the cloud bands provided by the USGS from the Landsat 8 OLI data download and a water mask 

generated from MODIS. The utilization of these two features were satisfactory for a basic analysis but to move into 

more detailed analysis there are some issues with each that need to be addressed. The 250m mask poses a problem 

when areas of prevailing water are too small to be detected by MODIS. This leads to our product erroneously 

classifying these waters as flood-induced instead of as prevailing water bodies. The incorporation of a 30m water 

mask, such as the NLCD open water classification, would be beneficial to eliminating false detection. For clouds, 

the team simply deleted all data covered by the clouds making analysis impossible on cloudy days. 

Lastly, using a data from a satellite that has a higher spatial and temporal resolution would be beneficial. For 

example, WorldView-4 data has both a high spatial resolution (31cm) and is available much more frequently on a 3-

day return interval. The incorporation of this data, or the more assessable high resolution Sentinel-2 MSI data, with 

the team’s process for flood mapping could provide even more accurate flood analysis data to the project partners. 

This would also afford more opportunities to avoid cloud covered days and get the best available picture of the flood 

event. 
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